Domain of attraction of the quasi-stationary distributions for the Ornstein-Uhlenbeck process
Abstract
Let (X-t) be a one-dimensional Ornstein-Uhlenbeck process with initial density function f : R+ --> R+, which is a regularly varying function with exponent -(1 + eta), eta is an element of (0, 1). We prove the existence of a probability measure nu with a Lebesgue density, depending on eta, such that for every A is an element of B(R+): lim(t-->infinity) P-f(X-t is an element of A - T-0(X) > t) = nu(A).
Más información
Título según WOS: | Domain of attraction of the quasi-stationary distributions for the Ornstein-Uhlenbeck process |
Título según SCOPUS: | Domain of attraction of the quasi-stationary distributions for the Ornstein-Uhlenbeck process |
Título de la Revista: | JOURNAL OF APPLIED PROBABILITY |
Volumen: | 37 |
Número: | 2 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2000 |
Página de inicio: | 511 |
Página final: | 520 |
Idioma: | English |
Notas: | ISI, SCOPUS |