Domain of attraction of the quasi-stationary distributions for the Ornstein-Uhlenbeck process
Abstract
Let (X-t) be a one-dimensional Ornstein-Uhlenbeck process with initial density function f : R+ --> R+, which is a regularly varying function with exponent -(1 + eta), eta is an element of (0, 1). We prove the existence of a probability measure nu with a Lebesgue density, depending on eta, such that for every A is an element of B(R+): lim(t-->infinity) P-f(X-t is an element of A - T-0(X) > t) = nu(A).
Más información
| Título según WOS: | Domain of attraction of the quasi-stationary distributions for the Ornstein-Uhlenbeck process |
| Título según SCOPUS: | Domain of attraction of the quasi-stationary distributions for the Ornstein-Uhlenbeck process |
| Título de la Revista: | JOURNAL OF APPLIED PROBABILITY |
| Volumen: | 37 |
| Número: | 2 |
| Editorial: | CAMBRIDGE UNIV PRESS |
| Fecha de publicación: | 2000 |
| Página de inicio: | 511 |
| Página final: | 520 |
| Idioma: | English |
| Notas: | ISI, SCOPUS |