Domain of attraction of the quasi-stationary distributions for the Ornstein-Uhlenbeck process

Lladser, M; San Martin, J

Abstract

Let (X-t) be a one-dimensional Ornstein-Uhlenbeck process with initial density function f : R+ --> R+, which is a regularly varying function with exponent -(1 + eta), eta is an element of (0, 1). We prove the existence of a probability measure nu with a Lebesgue density, depending on eta, such that for every A is an element of B(R+): lim(t-->infinity) P-f(X-t is an element of A - T-0(X) > t) = nu(A).

Más información

Título según WOS: Domain of attraction of the quasi-stationary distributions for the Ornstein-Uhlenbeck process
Título según SCOPUS: Domain of attraction of the quasi-stationary distributions for the Ornstein-Uhlenbeck process
Título de la Revista: JOURNAL OF APPLIED PROBABILITY
Volumen: 37
Número: 2
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2000
Página de inicio: 511
Página final: 520
Idioma: English
Notas: ISI, SCOPUS