Symbolic dynamics for sticky sets in Hamiltonian systems
Abstract
Hamiltonian systems, possessing an infinite hierarchy of islands-around-islands structure, have sticky sets, sets of all limiting points of islands of stability. A class of symbolic systems, called multipermutative, is introduced to model the dynamics in the sticky (multifractal) sets. Every multipermutative system is shown to consist of a collection of minimal subsystems that are topologically conjugate to adding machines. These subsystems are uniquely ergodic. Sufficient and necessary conditions of topological conjugacy are given. A subclass of sticky sets is constructed for which Hausdorff dimension is found and multifractal decomposition is described.
Más información
| Título según WOS: | Symbolic dynamics for sticky sets in Hamiltonian systems |
| Título según SCOPUS: | Symbolic dynamics for sticky sets in hamiltonian systems |
| Título de la Revista: | NONLINEARITY |
| Volumen: | 13 |
| Número: | 3 |
| Editorial: | IOP PUBLISHING LTD |
| Fecha de publicación: | 2000 |
| Página de inicio: | 617 |
| Página final: | 637 |
| Idioma: | English |
| URL: | http://stacks.iop.org/0951-7715/13/i=3/a=306?key=crossref.0795838c76454f0a8434f1e6c85e01d2 |
| DOI: |
10.1088/0951-7715/13/3/306 |
| Notas: | ISI, SCOPUS |