Symbolic dynamics for sticky sets in Hamiltonian systems

Afraimovich, V; Maass A.; Urias, J

Abstract

Hamiltonian systems, possessing an infinite hierarchy of islands-around-islands structure, have sticky sets, sets of all limiting points of islands of stability. A class of symbolic systems, called multipermutative, is introduced to model the dynamics in the sticky (multifractal) sets. Every multipermutative system is shown to consist of a collection of minimal subsystems that are topologically conjugate to adding machines. These subsystems are uniquely ergodic. Sufficient and necessary conditions of topological conjugacy are given. A subclass of sticky sets is constructed for which Hausdorff dimension is found and multifractal decomposition is described.

Más información

Título según WOS: Symbolic dynamics for sticky sets in Hamiltonian systems
Título según SCOPUS: Symbolic dynamics for sticky sets in hamiltonian systems
Título de la Revista: NONLINEARITY
Volumen: 13
Número: 3
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2000
Página de inicio: 617
Página final: 637
Idioma: English
URL: http://stacks.iop.org/0951-7715/13/i=3/a=306?key=crossref.0795838c76454f0a8434f1e6c85e01d2
DOI:

10.1088/0951-7715/13/3/306

Notas: ISI, SCOPUS