Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation
Abstract
We analyze an adaptive boundary element method for Symm's integral equation in 2D and 3D which incorporates the approximation of the Dirichlet data g into the adaptive scheme. We prove quasi-optimal convergence rates for any H1/2stable projection used for data approximation.
Más información
| Título según WOS: | Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation |
| Título según SCOPUS: | Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation |
| Título de la Revista: | CALCOLO |
| Volumen: | 51 |
| Número: | 4 |
| Editorial: | SPRINGER-VERLAG ITALIA SRL |
| Fecha de publicación: | 2013 |
| Página de inicio: | 1 |
| Página final: | 32 |
| Idioma: | English |
| DOI: |
10.1007/s10092-013-0100-x |
| Notas: | ISI, SCOPUS |