A review of learning vector quantization classifiers
Abstract
In this work, we present a review of the state of the art of learning vector quantization (LVQ) classifiers. A taxonomy is proposed which integrates the most relevant LVQ approaches to date. The main concepts associated with modern LVQ approaches are defined. A comparison is made among eleven LVQ classifiers using one real-world and two artificial datasets.
Más información
| Título según WOS: | A review of learning vector quantization classifiers |
| Título según SCOPUS: | A review of learning vector quantization classifiers |
| Título de la Revista: | NEURAL COMPUTING & APPLICATIONS |
| Volumen: | 25 |
| Número: | 3-4 |
| Editorial: | SPRINGER LONDON LTD |
| Fecha de publicación: | 2013 |
| Página de inicio: | 1 |
| Página final: | 14 |
| Idioma: | English |
| DOI: |
10.1007/s00521-013-1535-3 |
| Notas: | ISI, SCOPUS |