Formulas for q-spherical functions using inverse scattering theory of reflectionless Jacobi operators
Abstract
We study the spectral problem associated to a Ruijsenaars-type (q-)difference version of the one-dimensional Schrodinger operator with Poschl-Teller potential. The eigenfunctions are constructed explicitly with the aid of the inverse scattering theory of reflectionless Jacobi operators. As a result, we arrive at combinatorial formulas for basic hypergeometric deformations of zonal spherical functions on odd-dimensional hyperboloids and spheres.
Más información
| Título según WOS: | Formulas for q-spherical functions using inverse scattering theory of reflectionless Jacobi operators |
| Título según SCOPUS: | Formulas for q-spherical functions using inverse scattering theory of reflectionless Jacobi operators |
| Título de la Revista: | COMMUNICATIONS IN MATHEMATICAL PHYSICS |
| Volumen: | 210 |
| Número: | 2 |
| Editorial: | Springer |
| Fecha de publicación: | 2000 |
| Página de inicio: | 335 |
| Página final: | 369 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1007/s002200050783 |
| DOI: |
10.1007/s002200050783 |
| Notas: | ISI, SCOPUS |