Asymptotic behaviour of a Brownian motion on exterior domains
Abstract
We study the asymptotic behaviour of the transition density of a Brownian motion in D, killed at partial derivative D, where D-c is a compact non polar set. Our main result concern dimension d = 2, where we show that the transition density p(t)(D)(x, y) behaves, for large t, as 2/pi u(x)u(y)(t(log t)(2))(-1) for x, y is an element of D, where u is the unique positive harmonic function vanishing on (partial derivative D)(r), such that u(x) similar to log -x-.
Más información
| Título según WOS: | Asymptotic behaviour of a Brownian motion on exterior domains |
| Título según SCOPUS: | Asymptotic behaviour of a Brownian motion on exterior domains |
| Título de la Revista: | PROBABILITY THEORY AND RELATED FIELDS |
| Volumen: | 116 |
| Número: | 3 |
| Editorial: | SPRINGER HEIDELBERG |
| Fecha de publicación: | 2000 |
| Página de inicio: | 303 |
| Página final: | 316 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1007/s004400050251 |
| DOI: |
10.1007/s004400050251 |
| Notas: | ISI, SCOPUS |