Asymptotic behaviour of a Brownian motion on exterior domains
Abstract
We study the asymptotic behaviour of the transition density of a Brownian motion in D, killed at partial derivative D, where D-c is a compact non polar set. Our main result concern dimension d = 2, where we show that the transition density p(t)(D)(x, y) behaves, for large t, as 2/pi u(x)u(y)(t(log t)(2))(-1) for x, y is an element of D, where u is the unique positive harmonic function vanishing on (partial derivative D)(r), such that u(x) similar to log -x-.
Más información
Título según WOS: | Asymptotic behaviour of a Brownian motion on exterior domains |
Título según SCOPUS: | Asymptotic behaviour of a Brownian motion on exterior domains |
Título de la Revista: | PROBABILITY THEORY AND RELATED FIELDS |
Volumen: | 116 |
Número: | 3 |
Editorial: | Springer |
Fecha de publicación: | 2000 |
Página de inicio: | 303 |
Página final: | 316 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s004400050251 |
DOI: |
10.1007/s004400050251 |
Notas: | ISI, SCOPUS |