A combinatorial formula for the associated Legendre functions of integer degree
Abstract
Wt apply inverse scattering theory to a Schrodinger operator with a regular reflectionless Poschl-Teller potential on the line, to arrive at a combinatorial formula for the associated Legendre functions of integer degree. The expansion coefficients in the combinatorial formula are identified as dimensions of irreducible representations of gl(N), where N corresponds to the degree of the associated Legendre function. As an application, combinatorial formulas for the zonal spherical functions on the real hyperboloids H-2N+3,H- 1 =SO0(2N+3, 1; R)/SO0(2N+2. 1; R), H-1,H- 2N+3 =SO0(2N+3, 1; R)/SO(2N+3; R) and the sphere S2N+3 = SO(2N+4; R)/SO(2N + 3; R) are presented. (C) 2000 Academic Press.
Más información
Título según WOS: | A combinatorial formula for the associated Legendre functions of integer degree |
Título según SCOPUS: | A Combinatorial Formula for the Associated Legendre Functions of Integer Degree |
Título de la Revista: | ADVANCES IN MATHEMATICS |
Volumen: | 149 |
Número: | 1 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2000 |
Página de inicio: | 61 |
Página final: | 88 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0001870899918571 |
DOI: |
10.1006/aima.1999.1857 |
Notas: | ISI, SCOPUS |