A combinatorial formula for the associated Legendre functions of integer degree

Kirillov, AN

Abstract

Wt apply inverse scattering theory to a Schrodinger operator with a regular reflectionless Poschl-Teller potential on the line, to arrive at a combinatorial formula for the associated Legendre functions of integer degree. The expansion coefficients in the combinatorial formula are identified as dimensions of irreducible representations of gl(N), where N corresponds to the degree of the associated Legendre function. As an application, combinatorial formulas for the zonal spherical functions on the real hyperboloids H-2N+3,H- 1 =SO0(2N+3, 1; R)/SO0(2N+2. 1; R), H-1,H- 2N+3 =SO0(2N+3, 1; R)/SO(2N+3; R) and the sphere S2N+3 = SO(2N+4; R)/SO(2N + 3; R) are presented. (C) 2000 Academic Press.

Más información

Título según WOS: A combinatorial formula for the associated Legendre functions of integer degree
Título según SCOPUS: A Combinatorial Formula for the Associated Legendre Functions of Integer Degree
Título de la Revista: ADVANCES IN MATHEMATICS
Volumen: 149
Número: 1
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2000
Página de inicio: 61
Página final: 88
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0001870899918571
DOI:

10.1006/aima.1999.1857

Notas: ISI, SCOPUS