Observability of general linear pairs

Ayala V.; Hacibekiroglu, A; Kizil, E

Abstract

In this work, we deal with the observability of a general linear pair (X, pi(K)) on G which is a connected Lie group with Lie algebra g. By definition, the vector field X belongs to the normalizer of g related to the Lie algebra of all smooth vector fields on G. K is a closed Lie subgroup of G and pi(K) is the canonical projection of G onto the homogeneous space G/K. We compute the Lie algebra of the equivalence class of the identity element, and characterize local and global observability of (X, pi(k)) We extend the well-known observability rank condition of linear control systems on R-n and generalize the results appearing in [1]. (C) 1999 Elsevier Science Ltd. All rights reserved.

Más información

Título según WOS: Observability of general linear pairs
Título según SCOPUS: Observability of general linear pairs
Título de la Revista: COMPUTERS & MATHEMATICS WITH APPLICATIONS
Volumen: 39
Número: 1-2
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 2000
Página de inicio: 35
Página final: 43
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0898122199003119
DOI:

10.1016/S0898-1221(99)00311-9

Notas: ISI, SCOPUS