Rates of convergence for inexact Krasnosel'skii-Mann iterations in Banach spaces
Abstract
We study the convergence of an inexact version of the classical Krasnosel'skii-Mann iteration for computing fixed points of nonexpansive maps. Our main result establishes a new metric bound for the fixed-point residuals, from which we derive their rate of convergence as well as the convergence of the iterates towards a fixed point. The results are applied to three variants of the basic iteration: infeasible iterations with approximate projections, the Ishikawa iteration, and diagonal Krasnosels'kii-Mann schemes. The results are also extended to continuous time in order to study the asymptotics of nonautonomous evolution equations governed by nonexpansive operators.
Más información
Título según WOS: | Rates of convergence for inexact Krasnosel'skii-Mann iterations in Banach spaces |
Título según SCOPUS: | Rates of convergence for inexact Krasnosel’skii–Mann iterations in Banach spaces |
Título de la Revista: | MATHEMATICAL PROGRAMMING |
Volumen: | 175 |
Número: | 01-feb |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2018 |
Página de inicio: | 1 |
Página final: | 22 |
Idioma: | English |
DOI: |
10.1007/s10107-018-1240-1 |
Notas: | ISI, SCOPUS |