Rates of convergence for inexact Krasnosel'skii-Mann iterations in Banach spaces

Bravo, Mario; Cominetti, Roberto; Pavez-Signé, Matías

Abstract

We study the convergence of an inexact version of the classical Krasnosel'skii-Mann iteration for computing fixed points of nonexpansive maps. Our main result establishes a new metric bound for the fixed-point residuals, from which we derive their rate of convergence as well as the convergence of the iterates towards a fixed point. The results are applied to three variants of the basic iteration: infeasible iterations with approximate projections, the Ishikawa iteration, and diagonal Krasnosels'kii-Mann schemes. The results are also extended to continuous time in order to study the asymptotics of nonautonomous evolution equations governed by nonexpansive operators.

Más información

Título según WOS: Rates of convergence for inexact Krasnosel'skii-Mann iterations in Banach spaces
Título según SCOPUS: Rates of convergence for inexact Krasnosel’skii–Mann iterations in Banach spaces
Título de la Revista: MATHEMATICAL PROGRAMMING
Volumen: 175
Número: 01-feb
Editorial: SPRINGER HEIDELBERG
Fecha de publicación: 2018
Página de inicio: 1
Página final: 22
Idioma: English
DOI:

10.1007/s10107-018-1240-1

Notas: ISI, SCOPUS