Rates of convergence for inexact Krasnosel'skii-Mann iterations in Banach spaces
Abstract
We study the convergence of an inexact version of the classical Krasnosel'skii-Mann iteration for computing fixed points of nonexpansive maps. Our main result establishes a new metric bound for the fixed-point residuals, from which we derive their rate of convergence as well as the convergence of the iterates towards a fixed point. The results are applied to three variants of the basic iteration: infeasible iterations with approximate projections, the Ishikawa iteration, and diagonal Krasnosels'kii-Mann schemes. The results are also extended to continuous time in order to study the asymptotics of nonautonomous evolution equations governed by nonexpansive operators.
Más información
| Título según WOS: | Rates of convergence for inexact Krasnosel'skii-Mann iterations in Banach spaces |
| Título según SCOPUS: | Rates of convergence for inexact Krasnosel’skii–Mann iterations in Banach spaces |
| Título de la Revista: | MATHEMATICAL PROGRAMMING |
| Volumen: | 175 |
| Número: | 01-feb |
| Editorial: | SPRINGER HEIDELBERG |
| Fecha de publicación: | 2018 |
| Página de inicio: | 1 |
| Página final: | 22 |
| Idioma: | English |
| DOI: |
10.1007/s10107-018-1240-1 |
| Notas: | ISI, SCOPUS |