Eigenvalue localization for multivalued operators
Abstract
Let (H, [.,.]) be a Hilbert space, and F: H --> H be an operator with closed convex values. Denote by sigma (F) the set of all (real) eigenvalues of F. As shown in this note, if F satisfies a so-called upper-normality assumption, then it is possible to derive a simple variational formula for the supremum of sigma (F). Lower-normality of F yields, of course, an analogous formula for the infimum of sigma (F).
Más información
Título según WOS: | Eigenvalue localization for multivalued operators |
Título de la Revista: | OPTIMIZATION |
Volumen: | 48 |
Editorial: | TAYLOR & FRANCIS LTD |
Fecha de publicación: | 2000 |
Página de inicio: | 111 |
Página final: | 118 |
Idioma: | English |
Notas: | ISI |