A convergence result for nonautonomous subgradient evolution equations and its application to the steepest descent exponential penalty trajectory in linear programming

Baillon JB; Cominetti R.

Abstract

We present a new result on the asymptotic behavior of nonautonomous subgradient evolution equations of the form u(t) ? - ?o(u(t)), where {ot: t ? 0} is a family of closed proper convex functions. The result is used to study the flow generated by the family ot(x) = f(x, r(t)), where f(x, r) := cTx + r ? exp[(Aix-bi)/r] is the exponential penalty approximation of the linear program min {cTx: Ax ? b}, and r(t) is a positive function tending to 0 when t ? ?. We prove that the trajectory u(t) converges to an optimal solution u? of the linear program, and we give conditions for the convergence of an associated dual trajectory ?(t) toward an optimal solution of the dual program. © 2001 Elsevier Science.

Más información

Título según WOS: A convergence result for nonautonomous subgradient evolution equations and its application to the steepest descent exponential penalty trajectory in linear programming
Título según SCOPUS: A convergence result for nonautonomous subgradient evolution equations and its application to the steepest descent exponential penalty trajectory in linear programming
Título de la Revista: JOURNAL OF FUNCTIONAL ANALYSIS
Volumen: 187
Número: 2
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2001
Página de inicio: 263
Página final: 273
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022123601938285
DOI:

10.1006/jfan.2001.3828

Notas: ISI, SCOPUS