Modular hypergeometric residue sums of elliptic Selberg integrals
Abstract
It is shown that the residue expansion of an elliptic Selberg integral gives rise to an integral representation for a multiple modular hypergeometric series. A conjectural evaluation formula for the integral then implies a closed summation formula for the series, generalizing both the multiple basic hypergeometric 8?7 sum of Milne-Gustafson type and the (one-dimensional) modular hypergeometric 8?7 sum of Frenkel and Turaev. Independently, the modular invariance ensures the asymptotic correctness of our multiple modular hypergeometric summation formula for low orders in a modular parameter.
Más información
Título según WOS: | Modular hypergeometric residue sums of elliptic Selberg integrals |
Título según SCOPUS: | Modular hypergeometric residue sums of elliptic Selberg integrals |
Título de la Revista: | LETTERS IN MATHEMATICAL PHYSICS |
Volumen: | 58 |
Número: | 3 |
Editorial: | Springer |
Fecha de publicación: | 2001 |
Página de inicio: | 223 |
Página final: | 238 |
Idioma: | English |
URL: | http://link.springer.com/10.1023/A:1014567500292 |
DOI: |
10.1023/A:1014567500292 |
Notas: | ISI, SCOPUS |