Modular hypergeometric residue sums of elliptic Selberg integrals
Abstract
It is shown that the residue expansion of an elliptic Selberg integral gives rise to an integral representation for a multiple modular hypergeometric series. A conjectural evaluation formula for the integral then implies a closed summation formula for the series, generalizing both the multiple basic hypergeometric 8?7 sum of Milne-Gustafson type and the (one-dimensional) modular hypergeometric 8?7 sum of Frenkel and Turaev. Independently, the modular invariance ensures the asymptotic correctness of our multiple modular hypergeometric summation formula for low orders in a modular parameter.
Más información
| Título según WOS: | Modular hypergeometric residue sums of elliptic Selberg integrals |
| Título según SCOPUS: | Modular hypergeometric residue sums of elliptic Selberg integrals |
| Título de la Revista: | LETTERS IN MATHEMATICAL PHYSICS |
| Volumen: | 58 |
| Número: | 3 |
| Editorial: | Springer |
| Fecha de publicación: | 2001 |
| Página de inicio: | 223 |
| Página final: | 238 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1023/A:1014567500292 |
| DOI: |
10.1023/A:1014567500292 |
| Notas: | ISI, SCOPUS |