Modular hypergeometric residue sums of elliptic Selberg integrals

Spiridonov, VP

Abstract

It is shown that the residue expansion of an elliptic Selberg integral gives rise to an integral representation for a multiple modular hypergeometric series. A conjectural evaluation formula for the integral then implies a closed summation formula for the series, generalizing both the multiple basic hypergeometric 8?7 sum of Milne-Gustafson type and the (one-dimensional) modular hypergeometric 8?7 sum of Frenkel and Turaev. Independently, the modular invariance ensures the asymptotic correctness of our multiple modular hypergeometric summation formula for low orders in a modular parameter.

Más información

Título según WOS: Modular hypergeometric residue sums of elliptic Selberg integrals
Título según SCOPUS: Modular hypergeometric residue sums of elliptic Selberg integrals
Título de la Revista: LETTERS IN MATHEMATICAL PHYSICS
Volumen: 58
Número: 3
Editorial: Springer
Fecha de publicación: 2001
Página de inicio: 223
Página final: 238
Idioma: English
URL: http://link.springer.com/10.1023/A:1014567500292
DOI:

10.1023/A:1014567500292

Notas: ISI, SCOPUS