Orbital stability of standing waves for the nonlinear Schrodinger equation with potential
Abstract
We prove existence and orbital stability of standing waves for the nonlinear Schrödinger equation i(latin small letter h with stroke)?2?? - V(x)? + f(l?)? in ?Nx(0,?), concentrating near a possibly degenerate local minimum of the potential V, when the Plank's constant (latin small letter h with stroke) is small enough. Our method applies to general nonlinearities, including f(s) = sp-1 with p ? (1,1 + 4/N), but does not require uniqueness nor non-degeneracy of the limiting equation.
Más información
Título según WOS: | Orbital stability of standing waves for the nonlinear Schrodinger equation with potential |
Título según SCOPUS: | Orbital stability of standing waves for the nonlinear Schrödinger equation with potential |
Título de la Revista: | Reviews in Mathematical Physics |
Volumen: | 13 |
Número: | 12 |
Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD |
Fecha de publicación: | 2001 |
Página de inicio: | 1529 |
Página final: | 1546 |
Idioma: | English |
URL: | http://www.worldscientific.com/doi/abs/10.1142/S0129055X01001095 |
DOI: |
10.1142/S0129055X01001095 |
Notas: | ISI, SCOPUS |