Orbital stability of standing waves for the nonlinear Schrodinger equation with potential

Cid C.; Felmer P.

Abstract

We prove existence and orbital stability of standing waves for the nonlinear Schrödinger equation i(latin small letter h with stroke)?2?? - V(x)? + f(l?)? in ?Nx(0,?), concentrating near a possibly degenerate local minimum of the potential V, when the Plank's constant (latin small letter h with stroke) is small enough. Our method applies to general nonlinearities, including f(s) = sp-1 with p ? (1,1 + 4/N), but does not require uniqueness nor non-degeneracy of the limiting equation.

Más información

Título según WOS: Orbital stability of standing waves for the nonlinear Schrodinger equation with potential
Título según SCOPUS: Orbital stability of standing waves for the nonlinear Schrödinger equation with potential
Título de la Revista: Reviews in Mathematical Physics
Volumen: 13
Número: 12
Editorial: WORLD SCIENTIFIC PUBL CO PTE LTD
Fecha de publicación: 2001
Página de inicio: 1529
Página final: 1546
Idioma: English
URL: http://www.worldscientific.com/doi/abs/10.1142/S0129055X01001095
DOI:

10.1142/S0129055X01001095

Notas: ISI, SCOPUS