Regular and singular solutions of a quasilinear equation with weights
Abstract
In this article we study the behavior near 0 of the nonnegative solutions of the equation -div(a(cursive Greek chi)|?u|p-2?u) = b(cursive Greek chi)|u|?-1u, cursive Greek chi ? ? \ {0}, where ? is a domain of ?N containing 0, and ? > p - 1 > 0, a, b are nonnegative weight functions. We give a complete classification of the solutions in the radial case, and punctual estimates in the nonradial one. We also consider the Dirichlet problem in ?.
Más información
| Título según WOS: | Regular and singular solutions of a quasilinear equation with weights |
| Título según SCOPUS: | Regular and singular solutions of a quasilinear equation with weights |
| Título de la Revista: | ASYMPTOTIC ANALYSIS |
| Volumen: | 28 |
| Número: | 2 |
| Editorial: | SAGE PUBLICATIONS INC |
| Fecha de publicación: | 2001 |
| Página de inicio: | 115 |
| Página final: | 150 |
| Idioma: | English |
| Notas: | ISI, SCOPUS |