Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs
Abstract
We investigate minimum vertex degree conditions for 3-uniform hypergraphs which ensure the existence of loose Hamilton cycles. A loose Hamilton cycle is a spanning cycle in which only consecutive edges intersect and these intersections consist of precisely one vertex. We prove that every 3-uniform n-vertex (n even) hypergraph H with minimum vertex degree delta(1)(H) >= (7/16 + o(1))((n)(2)) contains a loose Hamilton cycle. This bound is asymptotically best possible. (C) 2013 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | ID WOS:000327561900002 Not found in local WOS DB |
| Título de la Revista: | JOURNAL OF COMBINATORIAL THEORY SERIES B |
| Volumen: | 103 |
| Número: | 6 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2013 |
| Página de inicio: | 658 |
| Página final: | 678 |
| DOI: |
10.1016/j.jctb.2013.07.004 |
| Notas: | ISI |