A fully discrete Galerkin scheme for a two-fold saddle point formulation of an exterior nonlinear problem

Gatica, GN; Meddahi S.

Abstract

We analyze a fully discrete Galerkin method for the coupling of mixed finite elements and boundary elements as applied to an exterior nonlinear transmission problem arising in potential theory. We first show that the corresponding continuous formulation becomes a well posed two-fold saddle point problem. Our discrete approach uses Raviart-Thomas elements of lowest order and is based on simple quadrature formulas for the interior and boundary terms. We prove that, if the parameter of discretization is sufficiently small, the fully discrete Galerkin scheme is uniquely solvable and leads to optimal error estimates.

Más información

Título según WOS: A fully discrete Galerkin scheme for a two-fold saddle point formulation of an exterior nonlinear problem
Título según SCOPUS: A fully discrete Galerkin scheme for a two-fold saddle point formulation of an exterior nonlinear problem
Título de la Revista: NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION
Volumen: 22
Número: 07-ago
Editorial: TAYLOR & FRANCIS INC
Fecha de publicación: 2001
Página de inicio: 885
Página final: 912
Idioma: English
URL: http://www.tandfonline.com/doi/abs/10.1081/NFA-100108314
DOI:

10.1081/NFA-100108314

Notas: ISI, SCOPUS