What Does Objective Mean in a Dirichlet-multinomial Process?
Abstract
The Dirichlet-multinomial process can be seen as the generalisation of the binomial model with beta prior distribution when the number of categories is larger than two. In such a scenario, setting informative prior distributions when the number of categories is great becomes difficult, so the need for an objective approach arises. However, what does objective mean in the Dirichlet-multinomial process? To deal with this question, we study the sensitivity of the posterior distribution to the choice of an objective Dirichlet prior from those presented in the available literature. We illustrate the impact of the selection of the prior distribution in several scenarios and discuss the most sensible ones.
Más información
Título según WOS: | ID WOS:000429546500006 Not found in local WOS DB |
Título de la Revista: | INTERNATIONAL STATISTICAL REVIEW |
Volumen: | 86 |
Número: | 1 |
Editorial: | WILEY-BLACKWELL |
Fecha de publicación: | 2018 |
Página de inicio: | 106 |
Página final: | 118 |
DOI: |
10.1111/insr.12231 |
Notas: | ISI |