Quasi-reversible instabilities of closed orbits
Abstract
We characterize the three generic quasi-reversible instabilities of closed orbits: the quasi-reversible saddle-node, the Krein collision and the period doubling bifurcation. We show that after a periodic change of variables the asymptotic normal forms of the last two instabilities are the Maxwell-Bloch and the Lorenz equations. We exhibit a simple example of the quasi-reversible period doubling bifurcation, the quasi-reversible 2:1 resonance. © 2001 Elsevier Science B.V.
Más información
Título según WOS: | Quasi-reversible instabilities of closed orbits |
Título según SCOPUS: | Quasi-reversible instabilities of closed orbits |
Título de la Revista: | Physics Letters A |
Volumen: | 287 |
Número: | 03-abr |
Editorial: | Elsevier |
Fecha de publicación: | 2001 |
Página de inicio: | 198 |
Página final: | 204 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S037596010100490X |
DOI: |
10.1016/S0375-9601(01)00490-X |
Notas: | ISI, SCOPUS |