The Gierer & Meinhardt system: The breaking of homoclinics and multi-bump ground states

Del Pino M.; Kowalczyk M.; Chen, XF

Abstract

In this paper we study ground-states of the Gierer & Meinhardt system on the line, namely solutions of the problem u? - u + v2/v = 0, ?-2v?-u + u2 = 0, u, v>0, u(±?) = 0 = v(±?). We prove that given any number N, there exists a solution to this problem exhibiting exactly N bumps in its u-component, separated from each other at a distance O(| log ?|), whenever ? is sufficiently small. These bumps resemble the shape of the unique solution of U? - U + U2 = 0, 0 < U(±?) = 0, U?(0) = 0. © World Scientific Publishing Company.

Más información

Título según WOS: The Gierer & Meinhardt system: The breaking of homoclinics and multi-bump ground states
Título según SCOPUS: The gierer & meinhardt system: The breaking of homoclinics and multi-bump ground states
Título de la Revista: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS
Volumen: 3
Número: 3
Editorial: WORLD SCIENTIFIC PUBL CO PTE LTD
Fecha de publicación: 2001
Página de inicio: 419
Página final: 439
Idioma: English
URL: http://www.worldscientific.com/doi/abs/10.1142/S0219199701000433
DOI:

10.1142/S0219199701000433

Notas: ISI, SCOPUS