The Gierer & Meinhardt system: The breaking of homoclinics and multi-bump ground states
Abstract
In this paper we study ground-states of the Gierer & Meinhardt system on the line, namely solutions of the problem u? - u + v2/v = 0, ?-2v?-u + u2 = 0, u, v>0, u(±?) = 0 = v(±?). We prove that given any number N, there exists a solution to this problem exhibiting exactly N bumps in its u-component, separated from each other at a distance O(| log ?|), whenever ? is sufficiently small. These bumps resemble the shape of the unique solution of U? - U + U2 = 0, 0 < U(±?) = 0, U?(0) = 0. © World Scientific Publishing Company.
Más información
| Título según WOS: | The Gierer & Meinhardt system: The breaking of homoclinics and multi-bump ground states |
| Título según SCOPUS: | The gierer & meinhardt system: The breaking of homoclinics and multi-bump ground states |
| Título de la Revista: | COMMUNICATIONS IN CONTEMPORARY MATHEMATICS |
| Volumen: | 3 |
| Número: | 3 |
| Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD |
| Fecha de publicación: | 2001 |
| Página de inicio: | 419 |
| Página final: | 439 |
| Idioma: | English |
| URL: | http://www.worldscientific.com/doi/abs/10.1142/S0219199701000433 |
| DOI: |
10.1142/S0219199701000433 |
| Notas: | ISI, SCOPUS |