A kinetic model of quantum jumps
Abstract
A new class of models describing the dissipative dynamics of an open quantum system S by means of random time evolutions of pure states in its Hilbert space ? is considered. The random evolutions are linear and defined by Poisson processes. At the random Poissonian times, the wavefunction experiences discontinuous changes (quantum jumps). These changes are implemented by some non-unitary linear operators satisfying a locality condition. If the Hilbert space ? of S is infinite dimensional, the models involve an infinite number of independent Poisson processes and the total frequency of jumps may be infinite. We show that the random evolutions in ? are then given by some almost-surely defined unbounded random evolution operators obtained by a limit procedure. The average evolution of the observables of S is given by a quantum dynamical semigroup, its generator having the Lindblad form.(1) The relevance of the models in the field of electronic transport in Anderson insulators is emphasised.
Más información
Título según WOS: | A kinetic model of quantum jumps |
Título según SCOPUS: | A kinetic model of quantum jumps |
Título de la Revista: | JOURNAL OF STATISTICAL PHYSICS |
Volumen: | 104 |
Número: | 03-abr |
Editorial: | Springer |
Fecha de publicación: | 2001 |
Página de inicio: | 525 |
Página final: | 572 |
Idioma: | English |
URL: | http://link.springer.com/10.1023/A:1010320520088 |
DOI: |
10.1023/A:1010320520088 |
Notas: | ISI, SCOPUS |