Limit laws of entrance times for low-complexity Canter minimal systems

Durand, F; Maass A.

Abstract

This paper is devoted to the study of limit laws of entrance times to cylinder sets for Cantor minimal systems of zero entropy using their representation by means of ordered Bratteli diagrams. We study in detail substitution subshifts and we prove that these limit laws are piecewise-linear functions. The same kind of results are obtained for classical low-complexity systems given by non-stationary ordered Bratteli diagrams.

Más información

Título según WOS: Limit laws of entrance times for low-complexity Canter minimal systems
Título según SCOPUS: Limit laws of entrance times for low-complexity Cantor minimal systems
Título de la Revista: NONLINEARITY
Volumen: 14
Número: 4
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2001
Página de inicio: 683
Página final: 700
Idioma: English
URL: http://stacks.iop.org/0951-7715/14/i=4/a=302?key=crossref.67de95094244bd25ee5d64b5fe15f4a5
DOI:

10.1088/0951-7715/14/4/302

Notas: ISI, SCOPUS