Limit laws of entrance times for low-complexity Canter minimal systems
Abstract
This paper is devoted to the study of limit laws of entrance times to cylinder sets for Cantor minimal systems of zero entropy using their representation by means of ordered Bratteli diagrams. We study in detail substitution subshifts and we prove that these limit laws are piecewise-linear functions. The same kind of results are obtained for classical low-complexity systems given by non-stationary ordered Bratteli diagrams.
Más información
Título según WOS: | Limit laws of entrance times for low-complexity Canter minimal systems |
Título según SCOPUS: | Limit laws of entrance times for low-complexity Cantor minimal systems |
Título de la Revista: | NONLINEARITY |
Volumen: | 14 |
Número: | 4 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2001 |
Página de inicio: | 683 |
Página final: | 700 |
Idioma: | English |
URL: | http://stacks.iop.org/0951-7715/14/i=4/a=302?key=crossref.67de95094244bd25ee5d64b5fe15f4a5 |
DOI: |
10.1088/0951-7715/14/4/302 |
Notas: | ISI, SCOPUS |