Non-recursive Chadi-Cohen integration over the Brillouin zone of cubic crystals
Abstract
We give closed-form non-recursive formulae for the Chadi-Cohen sets of special points associated with the bcc and fcc symmetries. The expressions are valid for arbitrary order n, which enters them as a parameter. This ameliorates the situation of the Chadi-Cohen method of integration over Brillouin zones, whose application to high-precision calculations has been severely limited by the difficulty of generating sets of special points of order higher than n = 2.
Más información
Título según WOS: | Non-recursive Chadi-Cohen integration over the Brillouin zone of cubic crystals |
Título según SCOPUS: | Non-recursive Chadi-Cohen integration over the Brillouin zone of cubic crystals |
Título de la Revista: | PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES |
Volumen: | 81 |
Número: | 6 |
Editorial: | TAYLOR & FRANCIS LTD |
Fecha de publicación: | 2001 |
Página de inicio: | 551 |
Página final: | 559 |
Idioma: | English |
URL: | http://www.tandfonline.com/doi/abs/10.1080/13642810108225450 |
DOI: |
10.1080/13642810108225450 |
Notas: | ISI, SCOPUS |