Differentiability of equilibria for linear exchange economies

Bonnisseau, JM; Florig M.; Jofré A

Abstract

The purpose of this paper is to study the differentiability properties of equilibrium prices and allocations in a linear exchange economy when the initial endowments and utility vectors vary. We characterize an open dense subset of full measure of the initial endowment and utility vector space on which the equilibrium price vector is a real analytic function, hence infinitely differentiable function. We provide an explicit formula to compute the equilibrium price and allocation around a point where it is known. We also show that the equilibrium price is a locally Lipschitzian mapping on the whole space. Finally, using the notion of the Clarke generalized gradient, we prove that linear exchange economies satisfy a property of gross substitution.

Más información

Título según WOS: Differentiability of equilibria for linear exchange economies
Título según SCOPUS: Differentiability of equilibria for linear exchange economies
Título de la Revista: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
Volumen: 109
Número: 2
Editorial: SPRINGER/PLENUM PUBLISHERS
Fecha de publicación: 2001
Página de inicio: 265
Página final: 288
Idioma: English
URL: http://link.springer.com/10.1023/A:1017558204399
DOI:

10.1023/A:1017558204399

Notas: ISI, SCOPUS