Minimum residual iteration for a dual-dual mixed formulation of exterior transmission problems

Gatica, GN; Heuer, N

Abstract

We investigate the minimum residual method for symmetric, indefinite linear systems of a so-called dual-dual structure. These systems arise when using a combined dual-mixed finite element method with a Dirichlet-to-Neumann mapping to solve a class of exterior transmission problems. As a model problem we consider an elliptic equation of divergence form coupled with the Laplace equation in an unbounded region of the plane. We give abstract convergence results for the preconditioned minimum residual method for the solution of linear systems of the special dual-dual structure. For our model problem, we show that this iterative method provides an efficient solution procedure where standard preconditioners can directly be used. Copyright © 2001 John Wiley & Sons, Ltd.

Más información

Título según WOS: Minimum residual iteration for a dual-dual mixed formulation of exterior transmission problems
Título según SCOPUS: Minimum residual iteration for a dual-dual mixed formulation of exterior transmission problems
Título de la Revista: NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Volumen: 8
Número: 3
Editorial: John Wiley & Sons Ltd.
Fecha de publicación: 2001
Página de inicio: 147
Página final: 164
Idioma: English
Notas: ISI, SCOPUS