A posteriori error estimates and a local refinement strategy for a finite element method to solve structural-acoustic vibration problems
Abstract
This paper deals with an adaptive technique to compute structural-acoustic vibration modes. It is based on an a posteriori error estimator for a finite element method free of spurious or circulation nonzero-frequency modes. The estimator is shown to be equivalent, up to higher order terms, to the approximate eigenfunction error, measured in a useful norm; moreover, the equivalence constants are independent of the corresponding eigenvalue, the physical parameters, and the mesh size. This a posteriori error estimator yields global upper and local lower bounds for the error and, thus, it may be used to design adaptive algorithms. We propose a local refinement strategy based on this estimator and present a numerical test to assess the efficiency of this technique.
Más información
Título según WOS: | A posteriori error estimates and a local refinement strategy for a finite element method to solve structural-acoustic vibration problems |
Título según SCOPUS: | A posteriori error estimates and a local refinement strategy for a finite element method to solve structural-acoustic vibration problems |
Título de la Revista: | ADVANCES IN COMPUTATIONAL MATHEMATICS |
Volumen: | 15 |
Número: | 01-abr |
Editorial: | Springer |
Fecha de publicación: | 2001 |
Página de inicio: | 25 |
Página final: | 59 |
Idioma: | English |
URL: | http://link.springer.com/10.1023/A:1014243118190 |
DOI: |
10.1023/A:1014243118190 |
Notas: | ISI, SCOPUS |