Convergence and asymptotic stabilization for some damped hyperbolic equations with non-isolated equilibria
Abstract
It is established convergence to a particular equilibrium for weak solutions of abstract linear equations of the second order in time associated with monotone operators with nontrivial kernel. Concerning nonlinear hyperbolic equations with monotone and conservative potentials, it is proved a general asymptotic convergence result in terms of weak and strong topologies of appropriate Hilbert spaces. It is also considered the stabilization of a particular equilibrium via the introduction of an asymptotically vanishing restoring force into the evolution equation.
Más información
Título según WOS: | Convergence and asymptotic stabilization for some damped hyperbolic equations with non-isolated equilibria |
Título según SCOPUS: | Convergence and asymptotic stabilization for some damped hyperbolic equations with non-isolated equilibria |
Título de la Revista: | ESAIM: Control, Optimisation and Calculus of Variations |
Volumen: | 6 |
Número: | 22 |
Editorial: | EDP SCIENCES S A |
Fecha de publicación: | 2001 |
Página de inicio: | 539 |
Página final: | 552 |
Idioma: | English |
URL: | http://www.esaim-cocv.org/10.1051/cocv:2001100 |
DOI: |
10.1051/cocv:2001100 |
Notas: | ISI, SCOPUS |