Hermite's constant for quadratic number fields
Abstract
We develop a method to compute the Hermite-Humbert constants ?K,n of a real quadratic number field K, the analogue of the classical Hermite constant ?n when ? is replaced by a quadratic extension. In the case n = 2, the problem is equivalent to the determination of lowest points of fundamental domains in ?2 for the Hilbert modular group over K, that had been studied experimentally by H. Cohn. We establish the results he conjectured for the fields ?(?2), ?(?3) and ?(?5). The method relies on the characterization of extreme forms in terms of perfection and eutaxy given by the second author in an earlier paper.
Más información
| Título según WOS: | Hermite's constant for quadratic number fields |
| Título según SCOPUS: | Hermite's constant for quadratic number fields |
| Título de la Revista: | EXPERIMENTAL MATHEMATICS |
| Volumen: | 10 |
| Número: | 4 |
| Editorial: | TAYLOR & FRANCIS INC |
| Fecha de publicación: | 2001 |
| Página de inicio: | 543 |
| Página final: | 551 |
| Idioma: | English |
| Notas: | ISI, SCOPUS |