A new identification method for use in nonlinear prediction
Abstract
This paper presents a new identification method for fuzzy models used in nonlinear prediction. The structure and parameters of the fuzzy model are obtained, using input-output data, by minimization of the prediction error. The predictive capacity of the fuzzy model is compared with other linear and non-linear models analyzing an illustrative example. The results show that the new method presents a better behavior.
Más información
| Título según WOS: | A new identification method for use in nonlinear prediction |
| Título según SCOPUS: | A new identification method for use in nonlinear prediction |
| Título de la Revista: | JOURNAL OF INTELLIGENT & FUZZY SYSTEMS |
| Volumen: | 10 |
| Número: | 03-abr |
| Editorial: | IOS Press |
| Fecha de publicación: | 2001 |
| Página de inicio: | 131 |
| Página final: | 137 |
| Idioma: | English |
| Notas: | ISI, SCOPUS |