Rates of decay and h-processes for one dimensional diffusions conditioned on non-absorption
Abstract
Let (Xt) be a one dimensional diffusion corresponding to the operator ? = 1/2?xx - ??x, starting from x > 0 and T0 be the hitting time of 0. Consider the family of positive solutions of the equation ?? = -?? with ??(0, ?), where ? = -limt??(1/t) log ?x(T0 > t). We show that the distribution of the h-process induced by any such ? is limM?? ?x(X ? A | SM < T0), for a suitable sequence of stopping times (SM : M ? 0) related to ? which converges to ? with M. We also give analytical conditions for ? = ?, where ? is the smallest point of increase of the spectral measure associated to ?*.
Más información
| Título según WOS: | Rates of decay and h-processes for one dimensional diffusions conditioned on non-absorption |
| Título según SCOPUS: | Rates of Decay and h-Processes for One Dimensional Diffusions Conditioned on Non-Absorption |
| Título de la Revista: | JOURNAL OF THEORETICAL PROBABILITY |
| Volumen: | 14 |
| Número: | 1 |
| Editorial: | Springer |
| Fecha de publicación: | 2001 |
| Página de inicio: | 199 |
| Página final: | 212 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1023/A:1007881317492 |
| DOI: |
10.1023/A:1007881317492 |
| Notas: | ISI, SCOPUS |