Rates of decay and h-processes for one dimensional diffusions conditioned on non-absorption

Martínez, S.; San Martin, J

Abstract

Let (Xt) be a one dimensional diffusion corresponding to the operator ? = 1/2?xx - ??x, starting from x > 0 and T0 be the hitting time of 0. Consider the family of positive solutions of the equation ?? = -?? with ??(0, ?), where ? = -limt??(1/t) log ?x(T0 > t). We show that the distribution of the h-process induced by any such ? is limM?? ?x(X ? A | SM < T0), for a suitable sequence of stopping times (SM : M ? 0) related to ? which converges to ? with M. We also give analytical conditions for ? = ?, where ? is the smallest point of increase of the spectral measure associated to ?*.

Más información

Título según WOS: Rates of decay and h-processes for one dimensional diffusions conditioned on non-absorption
Título según SCOPUS: Rates of Decay and h-Processes for One Dimensional Diffusions Conditioned on Non-Absorption
Título de la Revista: JOURNAL OF THEORETICAL PROBABILITY
Volumen: 14
Número: 1
Editorial: Springer
Fecha de publicación: 2001
Página de inicio: 199
Página final: 212
Idioma: English
URL: http://link.springer.com/10.1023/A:1007881317492
DOI:

10.1023/A:1007881317492

Notas: ISI, SCOPUS