Stationary localized solutions in the subcritical complex Ginzburg-Landau equation
Abstract
The stationary localized solutions in the subcritical complex Ginzburg-Landau equation are studied. It was showed that pulses in the complete quintic one-dimensional Ginzburg-Landau equation with complex coefficients appear through a saddle-node bifurcation which is determined analytically through a suitable approximation of the explicit form of the pulses. The results are in excellent agreement with direct numerical simulations.
Más información
Título según WOS: | Stationary localized solutions in the subcritical complex Ginzburg-Landau equation |
Título según SCOPUS: | Stationary localized solutions in the subcritical complex Ginzburg-Landau equation |
Título de la Revista: | INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS |
Volumen: | 12 |
Número: | 11 |
Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD |
Fecha de publicación: | 2002 |
Página de inicio: | 2459 |
Página final: | 2465 |
Idioma: | English |
URL: | http://www.worldscientific.com/doi/abs/10.1142/S0218127402005960 |
DOI: |
10.1142/S0218127402005960 |
Notas: | ISI, SCOPUS |