An elementary construction of complex patterns in nonlinear Schrodinger equations

Del Pino M.; Felmer P.; Tanaka K.

Abstract

We consider the problem of finding standing waves to a nonlinear Schrödinger equation. This leads to searching for solutions of the equation -?2u? + V(x)u = |u|p-1u in R, p > 1, when s is a small parameter. Given any finite set of points x1 < X2 < ? < xm constituted by isolated local maxima or minima of V, and corresponding arbitrary integers n i, i = 1,..., m, we prove that there is a finite energy solution exhibiting a cluster of n/ spikes concentrating around each xi as ? ? 0. The clusters consist of spikes with alternating sign if the point is a minimum, and of constant sign if it is a maximum. This construction extends to infinitely many clusters of spikes under appropriate conditions. The proof follows an elementary variational matching approach, which resembles the so-called broken-geodesic method.

Más información

Título según WOS: An elementary construction of complex patterns in nonlinear Schrodinger equations
Título según SCOPUS: An elementary construction of complex patterns in nonlinear schrödinger equations
Título de la Revista: NONLINEARITY
Volumen: 15
Número: 5
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2002
Página de inicio: 1653
Página final: 1671
Idioma: English
Notas: ISI, SCOPUS