Semi-classical limit for the one dimensional nonlinear Schrodinger equation
Abstract
In this article we study standing wave solutions for the nonlinear Schrödinger equation, which correspond to solutions of the equation ?2u? - V(x)u + u|u|p-1 = 0, x ? ?. We are interested in solutions having a prescribed L2 norm, exhibiting high oscillatory behavior and concentrating in an interval. We prove existence of such solutions and we study their asymptotic behavior as the parameter ? goes to zero. In particular we obtain an envelope function describing the amplitude of the solutions and we identify their asymptotic density.
Más información
Título según WOS: | Semi-classical limit for the one dimensional nonlinear Schrodinger equation |
Título según SCOPUS: | Semi-classical limit for the one dimensional nonlinear schrödinger equation |
Título de la Revista: | COMMUNICATIONS IN CONTEMPORARY MATHEMATICS |
Volumen: | 4 |
Número: | 3 |
Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD |
Fecha de publicación: | 2002 |
Página de inicio: | 481 |
Página final: | 512 |
Idioma: | English |
URL: | http://www.worldscientific.com/doi/abs/10.1142/S0219199702000749 |
DOI: |
10.1142/S0219199702000749 |
Notas: | ISI, SCOPUS |