Measurement error models with nonconstant covariance matrices

Arellano-Valle, RB; Bolfarine, H; Gasco, L

Abstract

In this paper we consider measurement error models when the observed random vectors are independent and have mean vector and covariance matrix changing with each observation. The asymptotic behavior of the sample mean vector and the sample covariance matrix are studied for such models. Using the derived results, we study the case of the elliptical multiplicative error-in-variables models, providing formal justification for the asymptotic distribution of consistent slope parameter estimators. The model considered extends a normal model previously considered in the literature. Asymptotic relative efficiencies comparing several estimators are also reported. © 2002 Elsevier Science (USA).

Más información

Título según WOS: Measurement error models with nonconstant covariance matrices
Título según SCOPUS: Measurement error models with nonconstant covariance matrices
Título de la Revista: JOURNAL OF MULTIVARIATE ANALYSIS
Volumen: 82
Número: 2
Editorial: ELSEVIER INC
Fecha de publicación: 2002
Página de inicio: 395
Página final: 415
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0047259X0192024X
DOI:

10.1006/jmva.2001.2024

Notas: ISI, SCOPUS