On Li-Yorke pairs

Blanchard, F; Glasner, E; Kolyada, S; Maass A.

Abstract

The Li-Yorke definition of chaos proved its value for interval maps. In this paper it is considered in the setting of general topological dynamics. We adopt two opposite points of view. On the one hand sufficient conditions for Li-Yorke chaos in a topological dynamical system are given. We solve a long-standing open question by proving that positive entropy implies Li-Yorke chaos. On the other hand properties of dynamical systems without Li-Yorke pairs are investigated; in addition to having entropy 0, they are minimal when transitive, and the property is stable under factor maps, arbitrary products and inverse limits. Finally it is proved that minimal systems without Li-Yorke pairs are disjoint from scattering systems.

Más información

Título según WOS: On Li-Yorke pairs
Título según SCOPUS: On Li-Yorke pairs
Título de la Revista: JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK
Volumen: 547
Número: 547
Editorial: WALTER DE GRUYTER GMBH
Fecha de publicación: 2002
Página de inicio: 51
Página final: 68
Idioma: English
Notas: ISI, SCOPUS