Strong solutions of a neutral type equation with finite delay

Poblete V.; Poblete F.; Pozo J.C.

Abstract

This paper is concerned to study the existence and uniqueness of solution of neutral type differential equations, by using the maximal regularity property of the first-order abstract Cauchy problem with finite delay on Lebesgue spaces defined at the line. The main tools that we use to achieve our goals are an operator-valued version of Miklhin's Fourier multiplier theorem, weighted Sobolev spaces on the real line and fixed point arguments.

Más información

Título según WOS: Strong solutions of a neutral type equation with finite delay
Título según SCOPUS: Strong solutions of a neutral type equation with finite delay
Título de la Revista: JOURNAL OF EVOLUTION EQUATIONS
Volumen: 19
Número: 2
Editorial: Springer
Fecha de publicación: 2019
Página de inicio: 361
Página final: 386
Idioma: English
DOI:

10.1007/s00028-019-00478-9

Notas: ISI, SCOPUS