An a posteriori error analysis of an elliptic optimal control problem in measure space
Abstract
We propose an a posteriori error estimator for an optimal control problem with sparsity promoting cost: the control variable lies in the space of regular Borel measures. We consider a solution technique that relies on the discretization of the control variable as a linear combination of Dirac measures. The proposed a posteriori error estimator can be decomposed into the sum of two contributions: an error estimator in the maximum norm for the discretization of the adjoint equation and an estimator in the L-2-norm that accounts for the approximation of the state equation. We prove that the designed error estimator is locally efficient and we explore its reliability properties. The analysis is valid for two and three-dimensional domains. We illustrate the theory with numerical examples. (C) 2019 Elsevier Ltd. All rights reserved.
Más información
Título según WOS: | An a posteriori error analysis of an elliptic optimal control problem in measure space |
Título según SCOPUS: | An a posteriori error analysis of an elliptic optimal control problem in measure space |
Título de la Revista: | COMPUTERS & MATHEMATICS WITH APPLICATIONS |
Volumen: | 77 |
Número: | 10 |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2019 |
Página de inicio: | 2659 |
Página final: | 2675 |
Idioma: | English |
DOI: |
10.1016/j.camwa.2018.12.043 |
Notas: | ISI, SCOPUS |