A random block-coordinate Douglas-Rachford splitting method with low computational complexity for binary logistic regression

Briceño-Arias L.M.; Chierchia G.; Chouzenoux E.; Pesquet J.-C.

Abstract

In this paper, we propose a new optimization algorithm for sparse logistic regression based on a stochastic version of the Douglas-Rachford splitting method. Our algorithm performs both function and variable splittings. It sweeps the training set by randomly selecting a mini-batch of data at each iteration, and it allows us to update the variables in a block coordinate manner. Our approach leverages the proximity operator of the logistic loss, which is expressed with the generalized Lambert W function. Experiments carried out on standard datasets demonstrate the efficiency of our approach w. r. t. stochastic gradient-like methods.

Más información

Título según WOS: A random block-coordinate Douglas-Rachford splitting method with low computational complexity for binary logistic regression
Título según SCOPUS: A random block-coordinate Douglas–Rachford splitting method with low computational complexity for binary logistic regression
Título de la Revista: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
Volumen: 72
Número: 3
Editorial: Springer
Fecha de publicación: 2019
Página de inicio: 707
Página final: 726
Idioma: English
DOI:

10.1007/s10589-019-00060-6

Notas: ISI, SCOPUS