On the small sample behavior of Dirichlet process mixture models for data supported on compact intervals
Abstract
Bayesian nonparametric models provide a general framework for flexible statistical modeling of modern complex data sets. We compare a rate-optimal and rate-suboptimal Bayesian nonparametric model for density estimation for data supported on a compact interval, by means of the analyses of simulated and real data. The results show that rate-optimal models are not uniformly better, across sample sizes, with respect to the way in which the posterior mass concentrates around a true model and that suboptimal models can outperform the optimal ones, even for relatively large sample sizes.
Más información
| Título según WOS: | On the small sample behavior of Dirichlet process mixture models for data supported on compact intervals |
| Título según SCOPUS: | On the small sample behavior of Dirichlet process mixture models for data supported on compact intervals |
| Título de la Revista: | COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION |
| Volumen: | 50 |
| Número: | 3 |
| Editorial: | TAYLOR & FRANCIS INC |
| Fecha de publicación: | 2019 |
| Idioma: | English |
| DOI: |
10.1080/03610918.2019.1568470 |
| Notas: | ISI, SCOPUS |