On the small sample behavior of Dirichlet process mixture models for data supported on compact intervals

Wehrhahn C.

Abstract

Bayesian nonparametric models provide a general framework for flexible statistical modeling of modern complex data sets. We compare a rate-optimal and rate-suboptimal Bayesian nonparametric model for density estimation for data supported on a compact interval, by means of the analyses of simulated and real data. The results show that rate-optimal models are not uniformly better, across sample sizes, with respect to the way in which the posterior mass concentrates around a true model and that suboptimal models can outperform the optimal ones, even for relatively large sample sizes.

Más información

Título según WOS: On the small sample behavior of Dirichlet process mixture models for data supported on compact intervals
Título según SCOPUS: On the small sample behavior of Dirichlet process mixture models for data supported on compact intervals
Título de la Revista: COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION
Volumen: 50
Número: 3
Editorial: TAYLOR & FRANCIS INC
Fecha de publicación: 2019
Idioma: English
DOI:

10.1080/03610918.2019.1568470

Notas: ISI, SCOPUS