AntiVPP 1.0: A portable tool for prediction of antiviral peptides

Beltrán Lissabet J.F.; Belén L.H.; Farias J.G.

Abstract

Viruses are worldwide pathogens with a high impact on the human population. Despite the constant efforts to fight viral infections, there is a need to discover and design new drug candidates. Antiviral peptides are molecules with confirmed activity and constitute excellent alternatives for the treatment of viral infections. In the present study, we developed AntiVPP 1.0, an accurate bioinformatic tool that uses the Random Forest algorithm for antiviral peptide predictions. The model of AntiVPP 1.0 for antiviral peptide predictions uses several features of 1088 peptides for training and validation. During the validation of the model we achieved the TPR = 0.87, SPC = 0.97, ACC = 0.93 and MCC = 0.87 performance measures, which were indicative of a robust model. AntiVPP 1.0 is a fast, accurate and intuitive software focused on the assessment of antiviral peptides candidates. AntiVPP 1.0 is available at https://glthub.com/bio-coding/AntiVPP.

Más información

Título según WOS: AntiVPP 1.0: A portable tool for prediction of antiviral peptides
Título según SCOPUS: AntiVPP 1.0: A portable tool for prediction of antiviral peptides
Título de la Revista: COMPUTERS IN BIOLOGY AND MEDICINE
Volumen: 107
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 2019
Página de inicio: 127
Página final: 130
Idioma: English
DOI:

10.1016/j.compbiomed.2019.02.011

Notas: ISI, SCOPUS