Hopf algebra structure of symmetric and quasisymmetric functions in superspace

Fishel S.; Pinto M.E.

Abstract

We show that the ring of symmetric functions in superspace is a cocommutative and self-dual Hopf algebra. We provide formulas for the action of the coproduct and the antipode on various bases of that ring. We introduce the ring sQSym of quasisymmetric functions in superspace and show that it is a Hopf algebra. We give explicitly the product, coproduct and antipode on the basis of monomial quasisymmetric functions in superspace. We prove that the Hopf dual of sQSym, the ring sNSym of noncommutative symmetric functions in superspace, has a multiplicative basis dual to the monomial quasisymmetric functions in superspace. (C) 2019 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Hopf algebra structure of symmetric and quasisymmetric functions in superspace
Título según SCOPUS: Hopf algebra structure of symmetric and quasisymmetric functions in superspace
Título de la Revista: JOURNAL OF COMBINATORIAL THEORY SERIES A
Volumen: 166
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2019
Página de inicio: 144
Página final: 170
Idioma: English
DOI:

10.1016/j.jcta.2019.02.016

Notas: ISI, SCOPUS