Hopf algebra structure of symmetric and quasisymmetric functions in superspace
Abstract
We show that the ring of symmetric functions in superspace is a cocommutative and self-dual Hopf algebra. We provide formulas for the action of the coproduct and the antipode on various bases of that ring. We introduce the ring sQSym of quasisymmetric functions in superspace and show that it is a Hopf algebra. We give explicitly the product, coproduct and antipode on the basis of monomial quasisymmetric functions in superspace. We prove that the Hopf dual of sQSym, the ring sNSym of noncommutative symmetric functions in superspace, has a multiplicative basis dual to the monomial quasisymmetric functions in superspace. (C) 2019 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Hopf algebra structure of symmetric and quasisymmetric functions in superspace |
Título según SCOPUS: | Hopf algebra structure of symmetric and quasisymmetric functions in superspace |
Título de la Revista: | JOURNAL OF COMBINATORIAL THEORY SERIES A |
Volumen: | 166 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2019 |
Página de inicio: | 144 |
Página final: | 170 |
Idioma: | English |
DOI: |
10.1016/j.jcta.2019.02.016 |
Notas: | ISI, SCOPUS |