An a posteriori error analysis of a velocity-pseudostress formulation of the generalized Stokes problem
Abstract
We consider a stabilized mixed finite element method introduced recently for the generalized Stokes problem. The method is obtained by adding suitable least squares terms to the dual-mixed variational formulation of the problem in terms of the velocity and the pseudostress. We obtain a new a posteriori error estimator of residual type and prove that it is reliable and locally efficient. Specifically, we develop an a posteriori error analysis based on the quasi-Helmholtz decomposition which allows us to prove the so-called local efficiency of the estimator with a non-homogeneous boundary condition. Finally, we present some numerical examples that confirm the theoretical properties of our approach. (C) 2019 Elsevier B.V. All rights reserved.
Más información
| Título según WOS: | An a posteriori error analysis of a velocity-pseudostress formulation of the generalized Stokes problem |
| Título según SCOPUS: | An a posteriori error analysis of a velocitypseudostress formulation of the generalized Stokes problem |
| Título de la Revista: | JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS |
| Volumen: | 357 |
| Editorial: | Elsevier |
| Fecha de publicación: | 2019 |
| Página de inicio: | 349 |
| Página final: | 365 |
| Idioma: | English |
| DOI: |
10.1016/j.cam.2019.02.019 |
| Notas: | ISI, SCOPUS |