Dynamics and bifurcations of a modified Leslie-Gower-type model considering a Beddington-DeAngelis functional response
Abstract
In this paper, a planar system of ordinary differential equations is considered, which is a modified Leslie-Gower model, considering a Beddington-DeAngelis functional response. It generates a complex dynamics of the predator-prey interactions according to the associated parameters. From the system obtained, we characterize all the equilibria and its local behavior, and the existence of a trapping set is proved. We describe different types of bifurcations (such as Hopf, Bogdanov-Takens, and homoclinic bifurcation), and the existence of limit cycles is shown. Analytic proofs are provided for all results. Ecological implications and a set of numerical simulations supporting the mathematical results are also presented.
Más información
Título según WOS: | Dynamics and bifurcations of a modified Leslie-Gower-type model considering a Beddington-DeAngelis functional response |
Título según SCOPUS: | Dynamics and bifurcations of a modified Leslie-Gowertype model considering a Beddington-DeAngelis functional response |
Título de la Revista: | MATHEMATICAL METHODS IN THE APPLIED SCIENCES |
Volumen: | 42 |
Número: | 9 |
Editorial: | Wiley |
Fecha de publicación: | 2019 |
Página de inicio: | 3179 |
Página final: | 3210 |
Idioma: | English |
DOI: |
10.1002/mma.5577 |
Notas: | ISI, SCOPUS |