Dynamics and bifurcations of a modified Leslie-Gower-type model considering a Beddington-DeAngelis functional response

Vera-Damián Y.

Abstract

In this paper, a planar system of ordinary differential equations is considered, which is a modified Leslie-Gower model, considering a Beddington-DeAngelis functional response. It generates a complex dynamics of the predator-prey interactions according to the associated parameters. From the system obtained, we characterize all the equilibria and its local behavior, and the existence of a trapping set is proved. We describe different types of bifurcations (such as Hopf, Bogdanov-Takens, and homoclinic bifurcation), and the existence of limit cycles is shown. Analytic proofs are provided for all results. Ecological implications and a set of numerical simulations supporting the mathematical results are also presented.

Más información

Título según WOS: Dynamics and bifurcations of a modified Leslie-Gower-type model considering a Beddington-DeAngelis functional response
Título según SCOPUS: Dynamics and bifurcations of a modified Leslie-Gower–type model considering a Beddington-DeAngelis functional response
Título de la Revista: MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Volumen: 42
Número: 9
Editorial: Wiley
Fecha de publicación: 2019
Página de inicio: 3179
Página final: 3210
Idioma: English
DOI:

10.1002/mma.5577

Notas: ISI, SCOPUS