Uniform positive existential interpretation of the integers in rings of entire functions of positive characteristic

Abstract

We prove a negative solution to the analogue of Hilbert's tenth problem for rings of one variable non-Archimedean entire functions in any characteristic. In the positive characteristic case we prove more: the ring of rational integers is uniformly positive existentially interpretable in the class of {0, 1, t, +, ., =}-structures consisting of positive characteristic rings of entire functions on the variable t. From this we deduce uniform undecidability results for the positive existential theory of such structures. (C) 2015 Elsevier Inc. All rights reserved.

Más información

Título según WOS: ID WOS:000357360100022 Not found in local WOS DB
Título de la Revista: JOURNAL OF NUMBER THEORY
Volumen: 156
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2015
Página de inicio: 368
Página final: 393
DOI:

10.1016/j.jnt.2015.04.018

Notas: ISI