ARRANGEMENTS OF CURVES AND ALGEBRAIC SURFACES

Urzua, Giancarlo

Abstract

We prove a strong relation between Chern and log Chern invariants of algebraic surfaces. For a given arrangement of curves, we find nonsingular projective surfaces with Chern ratio arbitrarily close to the log Chern ratio of the log surface defined by the arrangement. Our method is based on sequences of random p-th root covers, which exploit a certain large scale behavior of Dedekind sums and lengths of continued fractions. We show that randomness is necessary for our asymptotic result, providing another instance of "randomness implies optimal". As an application over C, we construct nonsingular simply connected projective surfaces of general type with large Chern ratio. In particular, we improve the Persson-Peters-Xiao record for Chern ratios of such surfaces.

Más información

Título según WOS: ID WOS:000275237600004 Not found in local WOS DB
Título de la Revista: JOURNAL OF ALGEBRAIC GEOMETRY
Volumen: 19
Número: 2
Editorial: UNIV PRESS INC
Fecha de publicación: 2010
Página de inicio: 335
Página final: 365
DOI:

10.1090/S1056-3911-09-00520-7

Notas: ISI