Convergence rates for the classical, thin and fractional elliptic obstacle problems

Nochetto, Ricardo H.; Otarola, Enrique; Salgado, Abner J.

Abstract

We review the finite-element approximation of the classical obstacle problem in energy and max-norms and derive error estimates for both the solution and the free boundary. On the basis of recent regularity results, we present an optimal error analysis for the thin obstacle problem. Finally, we discuss the localization of the obstacle problem for the fractional Laplacian and prove quasi-optimal convergence rates.

Más información

Título según WOS: ID WOS:000360825300014 Not found in local WOS DB
Título de la Revista: PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES
Volumen: 373
Número: 2050
Editorial: ROYAL SOC
Fecha de publicación: 2015
DOI:

10.1098/rsta.2014.0449

Notas: ISI