Convergence rates for the classical, thin and fractional elliptic obstacle problems
Abstract
We review the finite-element approximation of the classical obstacle problem in energy and max-norms and derive error estimates for both the solution and the free boundary. On the basis of recent regularity results, we present an optimal error analysis for the thin obstacle problem. Finally, we discuss the localization of the obstacle problem for the fractional Laplacian and prove quasi-optimal convergence rates.
Más información
Título según WOS: | ID WOS:000360825300014 Not found in local WOS DB |
Título de la Revista: | PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES |
Volumen: | 373 |
Número: | 2050 |
Editorial: | ROYAL SOC |
Fecha de publicación: | 2015 |
DOI: |
10.1098/rsta.2014.0449 |
Notas: | ISI |