A PDE approach to fractional diffusion: A posteriori error analysis
Abstract
We derive a computable a posteriori error estimator for the alpha-harmonic extension problem, which localizes the fractional powers of elliptic operators supplemented with Dirichlet boundary conditions. Our a posteriori error estimator relies on the solution of small discrete problems on anisotropic cylindrical stars. It exhibits built-in flux equilibration and is equivalent to the energy error up to data oscillation, under suitable assumptions. We design a simple adaptive algorithm and present numerical experiments which reveal a competitive performance. (C) 2015 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | ID WOS:000354119500025 Not found in local WOS DB |
| Título de la Revista: | JOURNAL OF COMPUTATIONAL PHYSICS |
| Volumen: | 293 |
| Editorial: | Elsevier |
| Fecha de publicación: | 2015 |
| Página de inicio: | 339 |
| Página final: | 358 |
| DOI: |
10.1016/j.jcp.2015.01.001 |
| Notas: | ISI |