A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis

Nochetto, Ricardo H.; Otarola, Enrique; Salgado, Abner J.

Abstract

The purpose of this work is to study solution techniques for problems involving fractional powers of symmetric coercive elliptic operators in a bounded domain with Dirichlet boundary conditions. These operators can be realized as the Dirichlet-to-Neumann map for a degenerate/singular elliptic problem posed on a semi-infinite cylinder, which we analyze in the framework of weighted Sobolev spaces. Motivated by the rapid decay of the solution to this problem, we propose a truncation that is suitable for numerical approximation. We discretize this truncation using first degree tensor product finite elements. We derive a priori error estimates in weighted Sobolev spaces. The estimates exhibit optimal regularity but suboptimal order for quasi-uniform meshes. For anisotropic meshes instead, they are quasi-optimal in both order and regularity. We present numerical experiments to illustrate the method's performance.

Más información

Título según WOS: ID WOS:000354710400005 Not found in local WOS DB
Título de la Revista: FOUNDATIONS OF COMPUTATIONAL MATHEMATICS
Volumen: 15
Número: 3
Editorial: Springer
Fecha de publicación: 2015
Página de inicio: 733
Página final: 791
DOI:

10.1007/s10208-014-9208-x

Notas: ISI