Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications
Abstract
We develop a constructive piecewise polynomial approximation theory in weighted Sobolev spaces with Muckenhoupt weights for any polynomial degree. The main ingredients to derive optimal error estimates for an averaged Taylor polynomial are a suitable weighted Poincar, inequality, a cancellation property and a simple induction argument. We also construct a quasi-interpolation operator, built on local averages over stars, which is well defined for functions in . We derive optimal error estimates for any polynomial degree on simplicial shape regular meshes. On rectangular meshes, these estimates are valid under the condition that neighboring elements have comparable size, which yields optimal anisotropic error estimates over -rectangular domains. The interpolation theory extends to cases when the error and function regularity require different weights. We conclude with three applications: nonuniform elliptic boundary value problems, elliptic problems with singular sources, and fractional powers of elliptic operators.
Más información
Título según WOS: | ID WOS:000367920100004 Not found in local WOS DB |
Título de la Revista: | NUMERISCHE MATHEMATIK |
Volumen: | 132 |
Número: | 1 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2016 |
Página de inicio: | 85 |
Página final: | 130 |
DOI: |
10.1007/s00211-015-0709-6 |
Notas: | ISI |