Probing the very high energy gamma-ray spectral curvature in the blazar PG 1553+113 with the MAGIC telescopes

Aleksic, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barrio, J. A.; Becerra Gonzalez, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; et. al.

Abstract

PG 1553+113 is a very high energy (VHE, E > 100 GeV) gamma-ray emitter classified as a BL Lac object. Its redshift is constrained by intergalactic absorption lines in the range 0.4 z 0.58. The MAGIC telescopes have monitored the source's activity since 2005. In early 2012, PG 1553+113 was found in a high state, and later, in April of the same year, the source reached its highest VHE flux state detected so far. Simultaneous observations carried out in X-rays during 2012 April show similar flaring behaviour. In contrast, the gamma-ray flux at E 100 GeV observed by Fermi-LAT is compatible with steady emission. In this paper, a detailed study of the flaring state is presented. The VHE spectrum shows clear curvature, being well fitted either by a power law with an exponential cut-off or by a log-parabola. A simple power-law fit hypothesis for the observed shape of the PG 1553+113 VHE gamma-ray spectrum is rejected with a high significance (fit probability P = 2.6 x 10(-6)). The observed curvature is compatible with the extragalactic background light (EBL) imprint predicted by current generation EBL models assuming a redshift z similar to 0.4. New constraints on the redshift are derived from the VHE spectrum. These constraints are compatible with previous limits and suggest that the source is most likely located around the optical lower limit, z = 0.4, based on the detection of Ly alpha absorption. Finally, we find that the synchrotron self-Compton model gives a satisfactory description of the observed multiwavelength spectral energy distribution during the flare.

Más información

Título según WOS: ID WOS:000360824000078 Not found in local WOS DB
Título de la Revista: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volumen: 450
Número: 4
Editorial: OXFORD UNIV PRESS
Fecha de publicación: 2015
Página de inicio: 4399
Página final: 4410
DOI:

10.1093/mnras/stv811

Notas: ISI