Integral springer theorem for quaternionic forms

Arenas-Carmona, Luis

Abstract

J.S. Hsia has conjectured an arithmetical version of Springer Theorem, which states that no two spinor genera in the same genus of integral quadratic forms become identified over an odd degree extension. In this paper we prove by examples that the corresponding result for quaternionic skew-hermitian forms does not hold in full generality. We prove that it does hold for unimodular skew-hermitian lattices under all extensions and for lattices whose discriminant is relatively prime to 2 under Galois extensions.

Más información

Título según WOS: Integral springer theorem for quaternionic forms
Título de la Revista: NAGOYA MATHEMATICAL JOURNAL
Volumen: 187
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2007
Página de inicio: 157
Página final: 174
DOI:

10.1017/S0027763000025885

Notas: ISI