Integral springer theorem for quaternionic forms
Abstract
J.S. Hsia has conjectured an arithmetical version of Springer Theorem, which states that no two spinor genera in the same genus of integral quadratic forms become identified over an odd degree extension. In this paper we prove by examples that the corresponding result for quaternionic skew-hermitian forms does not hold in full generality. We prove that it does hold for unimodular skew-hermitian lattices under all extensions and for lattices whose discriminant is relatively prime to 2 under Galois extensions.
Más información
Título según WOS: | Integral springer theorem for quaternionic forms |
Título de la Revista: | NAGOYA MATHEMATICAL JOURNAL |
Volumen: | 187 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2007 |
Página de inicio: | 157 |
Página final: | 174 |
DOI: |
10.1017/S0027763000025885 |
Notas: | ISI |